Remediation for Heavy Metal Contamination 291
Sha, J. C., C. Tong, H. Zhang, L. Feng and B. Liu. 2015. CdTe QDs functionalized mesoporous silica nanoparticles
loaded with conjugated polymers: a facile sensing platform for cupric (II) ion detection in water through
FRET. Dyes Pigments. 113: 102–9.
Shafi, A., S. Bano, N. Khan, S. Sultana, Z. Rehman, M. M. Rahman, M. M. Sabir, F. Coulon and M. Z. Khan. 2021.
Nanoremediation technologies for sustainable remediation of contaminated environments: recent advances
and challenges. Chemosphere. 130065.
Sharma, V., A. K. Saini and S. M. Mobin. 2016. Multicolour fluorescent carbon nanoparticle probes for live cell
imaging and dual palladium and mercury sensors. J. Mater. Chem. B. 4(14): 2466–2476.
Shawky, H. A. 2011. Improvement of water quality using alginate/montmorillonite composite beads. J. Appl. Polymer
Sci. 119(4): 2371–2378.
Sheet, I., A. Kabbani and H. Holail. 2014. Removal of heavy metals using nanostructured graphite oxide, silica
nanoparticles and silica/graphite oxide composite. Ener
gy procedia. 50: 130–138.
Shirdel, B. and M. A. Behnajady. 2020. Visible-light induced degradation of rhodamine B by Ba-doped ZnO
Nanoparticles. J. Mol. Liq. 315: 113633.
Siddiqui, M. H. and M. H. Al-Whaibi. 2014. Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum
seeds Mill.). Saudi J. Biol. Sci. 21: 13–17.
Stietiya, M. H. and J. J. Wang. 2014. Zinc and cadmium adsorption to aluminum oxide nanoparticles affected by
naturally occurring ligands. J. Environ. Qual. 43(2): 498–506.
Sundaram, R. M., A. Sekiguchi, M. Sekiya, T. Yamada and K. Hata. 2018. Copper/carbon nanotube composites:
research trends and outlook. Royal Soc. Open Sci. 5(1
1): 180814.
Tabish, T. A., F. A. Memon, D. E. Gomez, D. W. Horsell and S. Zhang. 2018. A facile synthesis of porous graphene
for efficient water and wastewater treatment. Sci. Rep. 8(1): 1–14.
Tang, W., Y. Su, Q. Li, S. Gao and J. K. Shang. 2013. Superparamagnetic magnesium ferrite nanoadsorbent for
effective arsenic (III, V) removal and easy magnetic separation. Water Res. 47(1
1): 3624–3634.
Ting, S. L., S. J. Ee, A. Ananthanarayanan, K. C. Leong and P. Chen. 2015. Graphene quantum dots functionalized
gold nanoparticles for sensitive electrochemical detection of heavy metal ions. Electrochimica Acta.
172: 7–11.
Tresintsi, S., K. Simeonidis, S. Estradé, C. Martinez-Boubeta, G. Vourlias, F. Pinakidou, M. Katsikini, E. C. Paloura,
G. Stavropoulos and M. Mitrakas. 2013. Tetravalent manganese feroxyhyte: a novel nanoadsorbent equally
selective for As (III) and As (V) removal from drinking water. Environ. Sci.
Technol. 47(17): 9699–9705.
Varun, S. and S. C. Daniel. 2018. Emerging nanosensing strategies for heavy metal detection. Nanotechnol. Sustain.
Water Resour. 5: 199–255.
Xie, Y. L., S. Q. Zhao, H. L. Ye, J. Yuan, P. Song and S. Q. Hu. 2015. Graphene/CeO2 hybrid materials for the
simultaneous electrochemical detection of cadmium (II), lead (II), copper (II), and mercury (II). J. Electroanal.
Chem. 15: 757: 235–242.
Yaqoob, S., F. Ullah, S. Mehmood, T. Mahmood, M. Ullah, A. Khattak and M. A. Zeb. 2018. Effect of waste water
treated with TiO2 nanoparticles on early seedling growth of Zea mays L. J. Water Reuse Desalin. 8(3):
424–431.
Zhang, C., J. Sui, Y. Li, Tang and W. Cai. 2012. Efficient removal of heavy metal ions by thiol-functionalized
superparamagnetic carbon nanotubes. Chem. Eng. J. 210: 45–52.
Zhang, J., L. He, P. Chen, C. Tian, J. Wang, B. Liu, C. Jiang and Z. Zhang. 2017. A silica-based SERS chip for rapid
and ultrasensitive detection of fluoride ions triggered by a cyclic boronate ester cleavage reaction. Nanoscale.
9(4): 1599–606.
Zhang, R. and W. Chen. 2014. Nitrogen-doped carbon quantum dots: facile synthesis and application as a “turn-off”
fluorescent probe for detection of Hg2+ ions. Biosens. Bioelectron. 55: 83–90.
Zhao, L., W. Gu, C. Zhang, X. Shi and Y. Xian. 2016. In situ regulation nanoarchitecture of Au nanoparticles/reduced
graphene oxide colloid for sensitive and selective SERS detection of lead ions. J. Colloid Interface Sci. 465:
279–285.